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Abstract: More and deeper reinforcement learning algorithms have been proposed and 
demonstrated on a series of decision-making domains. However, little research has been hammered 
at algorithm extraction. With duality in deep reinforcement learning substantially summarized, we 
propose a conceptually simple framework for deep reinforcement learning based on duality. Then, 
we propose the dual method of prioritized sampling: prioritized learning. Finally, we give the 
formula and analysis for the duality with priority. The algorithm implementation and experiment 
will be put on Part II-Implementation. 

1. Introduction  

Deep Reinforcement Learning (DRL) has been demonstrated on a series of challenge domains, 
from games [1-2] to robotic control [3]. There are basically two types: model-free algorithms and 
model-based algorithms, except the problems of sparse rewards, such as HER [4] and the problems 
hard to define rewards HRL [5]. Model-free algorithms are focused on how to achieve data 
efficiency, such as asynchronous methods, priority methods, while model-based algorithms commit 
themselves to data generation from expert demonstrations. 

Synoptically, support for model-free algorithms depend on two aspects: Actor-Critic algorithms 
and off-policy methods. Actor-Critic algorithms are available to distributed computing, where enable 
the models to decouple actors from learners. While off-policy methods can make the utmost of 
replay memory. However, replay memory in DQN have been based on the uniform distribution, 
which is not substantial for data efficiency. Prioritized DQN [6] assigns a greater sampling weight 
for the state of high learning efficiency. Despite this, this is not sufficient. 

Machine learning is the problem of interdisciplinary integration, including information theory, 
optimization algorithm, sampling theory, etc. [7], which is one of the inspirations for this work. Here 
we introduce straightly the conclusion, and more details can be seen in Section III. What we refer is 
Duality. It has been demonstrated that the learners can use temporal-difference (TD) error to give the 
actors sampling priority [8]. According to the duality between actors and learners in Actor-Critic 
algorithms, why not use the actors to give the learners learning priority? 

This work summarizes previous deep reinforcement learning algorithms and obtains some general 
conclusions. Our contribution is to present the Duality in deep reinforcement learning. Based on this, 
we propose an approach for deep reinforcement learning throughout combining priority, to improve 
the efficiency of data. 

2. Background 

In this section, we formulate reinforcement learning problems as a standard Markov Decision 
Process (MDP) [9], and introduce the necessary algorithmic foundations which are aimed to guide 
our work.  

2.1 Reinforcement Learning 

We consider a reinforcement learning process where an agent interacts with an environment in a 

2019 2nd International Conference on Mechanical, Electronic and Engineering Technology (MEET 2019)

Published by CSP © 2019 the Authors 59



discrete timesteps. At state 𝑠௧ in timestep 𝑡, the agent selects action 𝑎௧ according to the stochastic 
distribution πሺ𝑎௧|𝑠௧ሻ or a deterministic mapping 𝑎௧ ൌ πሺ𝑠௧ሻ, transitions to new state 𝑠௧ାଵ according 
to the dynamics 𝑃ሺ𝑠௧ାଵ|𝑠௧, 𝑎௧ሻ, and receives a reward 𝑅ሺ𝑠௧, 𝑎௧ሻ. Here, the return from state 𝑠௧ can be 
defined as the sum of γ -discounted future reward 𝐺௧ ൌ ∑ 𝛾ሺ௜ି௧ሻ𝑅ሺ𝑠௧, 𝑎௧ሻ்

௜ୀ௧ , where γ  is the 
discounting factor, and 𝑇 ൌ ∞  in an infinite-horizon or 𝑇 ൏ ∞  in a finite-horizon. The goal of 
reinforcement learning is to learn a policy which the expected state return 𝐽 ൌ 𝔼஠ሾ𝐺௧ୀ଴ሿ from an 
initial distribution pሺs଴ሻ is maximized over the agent’s trajectory τ ൌ ሺ𝑠଴, 𝑎଴, 𝑠ଵ, 𝑎ଵ, … ሻ. 

2.2 Actor-Critic Framework 

The approach to reinforcement learning problems can be divided into two alternative methods. 
The first one called value function approaches (Critic-only), is an estimate of the expected future 
reward based on the policy π, where the value-action function 𝑄గ is defined as: 

 𝑄గሺ𝑠, 𝑎ሻ ൌ 𝔼஠ሾ∑ 𝛾௧ାஶ
௧ୀ଴ 𝑅ሺ𝑠௧, 𝑎௧ሻሿ　　　(1) 

The policy is implicitly derived from 𝑄గ  as 𝜋ሺ𝑠ሻ ൌ argmax௔∈𝒜𝑄గሺ𝑠, 𝑎ሻ. The other available 
method is policy search (Actor-only). In the policy search methods, policies are represented by a 
variety of approaches and can be directly optimized to maximize the cumulative reward, given: 

 𝐽ሺθሻ ൌ 𝔼ఛ~஠ഇሺఛሻሾ𝑟ሺ𝜏ሻሿ ൌ ׬ 𝜋ఏሺ𝜏ሻ𝑟ሺ𝜏ሻ
ఛ~గഇሺఛሻ d𝜏　　　(2) 

where r(τ) represents the total reward of the trajectory. Actor-Critic framework (Peters et al., 2008) 
consists of value function approaches and policy search methods, where the Critic estimates the 
value function based on the temporal difference (TD) learning, while the Actor updates the policy 
parameters according to the learned value function. 

2.3 Priority  

The Priority is used for experience replay. Experience replay has been demonstrated on improving 
data efficiency in reinforcement learning, in that experience replay can disrupt the correlation of 
samples and allow the agent to learn from off-policy methods. Prioritized experience replay extends 
classic experience replay according to importance sampling techniques. The experience of the agent 
is not of equal importance to the learning. The idea of prioritized experience replay is to break up 
uniform sampling and give bigger sampling weight to the state with high learning efficiency, to 
increase the sampling probability of valuable samples. Ape-X [8] also extends priority based on 
parallel computation. It does not wait for the learner to update priorities, which can occur to a 
myopic focus on the most recent data. In contrast, it evaluates multi-actors’ local copies of the policy, 
and computes suitable priorities for new transitions online. 

3. Related Works 

3.1 Duality Summary 

Table 1. Duality in deep reinforcement learning 

Duality The Former The Latter 

Actor vs. Critic 
(1) Bias estimate 
(2) Low variance 

(1) Unbiased estimate 
(2) Large variance 

On-policy vs. Off-policy 
(1) Data inefficiency 
(2) Easy to convergence 

(1) Data efficiency 
(2) Easy to divergence 

Synchronous vs. 
Asynchronous 

No unified argument 

Exploration vs. Exploitation 
(1) Policies with wide 
coverage 
(2) Hard to convergence 

(1) Trap into the sub-optimal 
solution 
(2) Easy to convergence 

In the early development of Linear Programming, the most important discovery is the dual 
problem. Every linear programming problem is accompanied by another linear programming 
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problem, called the dual problem [10]. The idea is not limited to optimization problems, here we just 
refer Duality. In this section, research on duality in deep reinforcement learning has been 
substantially investigated and summarized in Table 1. 

3.2 Duality in Actor vs. Critic 

One of the core problems in machine learning is trade-off bias and variance, which consists of 
duality in Actor-Critic architecture. For policy-based models (Actor-only), the estimation of gradient 
produces a large variance, which cause a slow learning speed. In contrast, for value function-based 
models (Critic-only), TD error learning method reduces the variance, but it is difficult to apply for 
the continuous problem due to the large amount of calculation. Actor-Critic algorithms combine the 
fast learning of value function-based models and easy to convergence of policy-based models [11]. 
The Critic in Actor-Critic architecture estimates the value function according to the TD error 
learning, and the Actor in Actor-Critic architecture dynamically updates the policy parameters 
according to the learned value function. However, this method results in a bigger bias. In order to 
good trade-off bias and variance, multi-step learning [12] is imported on TD error learning. 

3.3 Duality in On-policy vs. Off-policy 

Under the Actor-Critic architecture, two policies need to be followed: the policy of data 
generation is called behavior policy, and the policy of learning from data is called target policy. If 
the two policies are the same policy, they are called on-policy, otherwise off-policy. Despite slow 
convergence of off-policy methods, their applications are more powerful and general due that all 
behaviors can be covered and their experiences can be available to self-generated or external data. Its 
dual method is on-policy, where its straightforward policy and easy to converge show its superiority. 
However, it easily traps itself into local optimum. As for data efficiency, we demonstrated that, 
mature off-policy algorithms, such as Deep Deterministic Policy Gradient (DDPG) [11] and 
Normalized Advantage Function (NAF) [13] can achieve a well-used data efficiency. In contrast, 
some general-purpose on-policy DRL algorithms, such as Trust Region Policy Optimization (TRPO) 
[14] and Asynchronous Advantage Actor-Critic (A3C) [12], require new samples to be collected for 
each learning step on the policy, which occurs to the data inefficiency. 

3.4 Duality in Synchronous vs. Asynchronous 

The idea of distributed system has recently been induced into deep reinforcement learning, which 
benefits from the parallelism architecture DistBelief [15] and the learning architecture (Actor-Critic). 
Parallel sampling from the interaction with the environment and parallel training are important 
features of asynchronous algorithms. Because on-policy methods take more time for data generation. 
After samples collected, each thread completes the training independently and gets the parameters 
update, then completes the global parameter synchronization asynchronously. However, this does not 
explain the advantages of the asynchronous approach. The Advantage Actor-Critic (A2C) algorithm, 
mentioned in OpenAI's official website, centralizes decision-making and training tasks into one place 
(GPU), while other processes (multi-core CPUs) are only responsible for interaction with the 
environment. The experiment shows that A2C is superior to A3C in implementation and final 
performance. At present, there is no unified demonstration on the duality of asynchronization and 
synchronization. 

3.5 Duality in Exploration vs. Exploitation 

Trade-off exploration and exploitation becomes a dual problem. Exploration-only leads to the 
insufficient attempt of the optimal policy and the inaccurate value function, which ultimately makes 
the agent deprive the chance to select the optimal policy. In contrast, exploitation-only enables the 
agent to trap itself into the sub-optimal solution. Research on exploration and exploitation has always 
been decoupled. Some of the art-of-the-state exploration algorithms include Noisy networks [16], 
Parameter space noise [17], which represent the model as neural networks and add the noise to 
parameter space, while utilize parameter perturbations for more efficient exploration. On the contrary, 
we can think about the exploitation, such as Deep Q-learning from Demonstrations (DQfD) [18], 
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which leverages even very small amounts of demonstration data to massively accelerate learning. 

4. Our Method 

4.1 Terminology 

In the previous section, duality in deep reinforcement learning has been summarized. In this 
section, we import the duality in robot control to define the necessary terminology for dual system. 
Then we formulate the Duality in deep reinforcement learning (DDRL) according to Entropy. 

In the robot force control field, Hogan has extended a system description method called Bond 
Graph [19]. The bond graph shows the transfer of energy between parts of the system. It defines the 
physical quantity such as force and voltage as the effort, while speed and current as the flow. If the 
effort multiples with the flow, it produces the instantaneous power, given by 

 power ൌ effort ൈ flow 　　　(3) 

Also, some systems input the effort (such as force) and output the flow (such as speed) called 
admittance systems, while others input the flow (such as speed) and output the effort (such as force), 
called impedance systems. Some details can be referred to Hogan’s research. 

We demonstrate that Bond graph defines the Duality in the robot’s interaction with the 
environment, where the robot can be also regarded as the agent. The effort produces the energy while 
the flow consumes the energy. The system with the effort input and the flow output is called the 
admittance system, and vice (duality) called the impedance system. 

Our work is to extend the idea into the DRL field. Bond graph can describe the transfer of energy 
flow in mechanical or electrical systems, while we describe the transfer of data flow in DRL systems. 
Here we just consider the Actor-Critic architecture for the Duality. 

We define the part for data generation as the actor (effort) and for the data consumption (learning) 
as the learner (flow). The actor generates data and supplies sample experiences to the learner, which 
can be referred as the acting (also called policy evaluation, forward system). While the learner 
consumes data and provides the actor with update parameters, which be considered as the learning 
(policy improvement, feedback system). To unify mechanical (electrical) systems with DRL systems, 
we define the process that the energy (data) from the effort to the flow calls on-flow, vice called off-
flow. Therefore, we call the acting as on-flow and the learning as off-flow. The dual terminology can 
be referred in Table 2. 

Table 2. Duality in mechanical (electrical) systems vs. DRL systems 

System Mechanical DRL 
Drive Energy flow Data flow 

Input vs. Output Effort vs. Flow Actor vs. Learner 

On-flow vs. Off-flow 
Admittance vs. 

Impedance 
Acting vs. Learning 

4.2 Duality with Entropy 

In the robot force control field, the effort multiples with the flow and produces the instantaneous 
power. Therefore, it can reveal the relationship of energy storage and conversion. However, energy 
cannot be obtained by multiplying the effort times the flow in data flow systems. Here we induce 
Entropy and introduce the duality with entropy in DRL systems. 

In fact, we point the Kullback–Leibler (KL) divergence, which describes the difference between 
two probability distributions p and q. The formula of KL divergence is given: 

 KLሺ𝑝||𝑞ሻ ൌ 𝔼௫~௣ ቂlog ௣ሺ௫ሻ

௤ሺ௫ሻ
ቃ 　　　(4) 

KL divergence is a good measure of the distance between two probability distributions. The 
closer the two distributions are, the smaller the KL divergence is. It can be proven that the KL 
divergence is non-negative. 
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In TRPO, the goal is to find the new policy to keep the return function monotonous nondecreasing. 
A natural idea is to decompose the expected return based on the new policy into the expected return 
based on the old policy and the other term. In this way, as long as the other term is non-negative, the 
expected return of the new policy is guaranteed to remain monotonous nondecreasing. The formula 
is proposed by Sham, given by 

 𝜂ሺπ෥ሻ ൌ 𝜂ሺπሻ ൅ 𝔼௦బ,௔బ,…~஠෥ሾ∑ 𝛾௧ାஶ
௧ୀ଴ 𝐴஠ሺ𝑠௧, 𝑎௧ሻሿ　　　(5) 

where 𝜂ሺπሻ  and 𝜂ሺπ෥ሻ  means the expected return by the old policy π and the new policy π෥ , 
respectively. The second part on the right side of the equation can be proved to be non-negative, 
which ensures the monotonous nondecreasing expected return of the new policy [20]. Then, the 
importance sampling is adopted to improve the return function near the old policy. Therefore, the 
constraint of the learning step length can be given by 

 KL୫ୟ୶ሺπ||π෥ሻ ൑ 𝛿 　　　(6) 

Another example can also describe duality based on KL in Guide Policy Search (GPS) [21]. By 
optimizing trajectories in tandem with the policy, GPS methods combine the flexibility of trajectory 
optimization with the generality of policy search. In other word, GPS means the acting generates 
data by interacting with the control phase, and the learning learns from the data generated from the 
control phase by the monitor phase. We can give the formula of loss function: 

 minఏ,௤ KLሺ𝑞ሺ𝜏ሻ|| 𝜌ሺ𝜏ሻሻ  　　　(7) 

where we denoted q(τ) as the policy on distributions over good trajectories, and ρ(τ) as the 
expected sum return by the policy πఏሺ𝜏ሻ. When alternating policy and trajectory optimization, q(τ) 
and πఏሺ𝜏ሻ are gradually brought into agreement. 

No matter what duality in on-policy and off-policy (TRPO) or duality in on-flow and off-flow 
(GPS), KL divergence is suitable for measuring the difference between two probability distributions. 
We denote that probability distributions p and q as the probability distribution of data generation 
(Target distribution) and the probability of data learning (Approximate distribution). Then, we define 
Momentum projection (M-projection) as 

 𝑞 ൌ arg min
௤

KLሺ𝑝||𝑞ሻ                           (8-a) 

where it forces that the approximate distribution q has a high probability at the state where the 
target distribution p has a high probability. While, we also define Information projection (I-
projection) as 

 𝑞 ൌ arg min 
௤

KLሺ𝑞||𝑝ሻ                          (8-b) 

where it forces that the approximate distribution q is zero at the state where the target distribution 
p is zeros. M-projection attempts to cover all the trajectories, while I-projection attempts to restrain 
the bad trajectories. The two consist of Duality in DRL. 

4.3 Duality Based on Priority 

In this part, we start from a brief introduction of the Prioritized DQN. In off-policy methods, we 
can take advantage of experience replay. We demonstrate that the experience of the agent is not of 
equal importance to the learning. The idea of prioritized experience replay is to break up uniform 
sampling and give bigger sampling weight to the state with high learning efficiency, to increase the 
sampling probability of valuable samples. In other word, the worse performance the agent interacts 
with the environment (the bigger TD error), the higher weight the learning should distribute while 
the higher sampling probability the acting should distribute, hence there it contributes to a better 
learning efficiency, and vice versa. 

We assume that the TD error at the sample 𝑖 is 𝛿௜, so the sampling probability at this sample 𝑖 
is 𝑃ሺ𝑖ሻ ൌ 𝑝௜

ఈ/ ∑ 𝑝௞
ఈ

௞ , where 𝑝௜
ఈ  depends on 𝛿௜ . However, when we sample by the probability 
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converges to zeros. At this point, we can think 𝑝 ൌ 𝑞 ൌ 0 (No exist priority). In other word, when 
the agent interacts by the optimal policy, KLሺ𝑝||𝑞ሻ ൌ 0. Therefore, we can consider KLሺ𝑝||𝑞ሻ as loss 
function or a regular term in loss function. In addition, we can induce the regular term െHሺ𝑝ሻ into 
loss function for sufficient exploration, to avoid plunging into local optimum. 

5. Summary 

In this work, we first induce Duality and analyze some dual problems in deep reinforcement 
learning (DRL). Then we introduce the application of KL divergence in DRL and refer it as Duality 
in deep reinforcement learning (DDRL) with entropy. According to DDRL, we propose the dual 
problem of prioritized sampling: prioritized learning. Finally, we give the formula and simple 
analysis of priority based DDRL. In addition, as for the implementation of DDRL, especially the 
implementation of DDRL based on dual priority, we will put it into Part II-Implementation. 

References 

[1] Mnih V, Kavukcuoglu K, Silver D, et al. Playing atari with deep reinforcement learning. In 
NIPS Deep Learning Workshop, 2013. 

[2] Silver D, Huang A, Maddison C J, et al. Mastering the game of go with deep neural networks 
and tree search. Nature, 529(7587):484–489, 2016. 

[3] Schulman J, Wolski F, Dhariwal P, et al. Proximal policy optimization algorithms. arXiv 
preprint arXiv:1707.06347, 2017. 

[4] Andrychowicz M, Wolski F, Ray A, et al. Hindsight Experience Replay. arXiv preprint 
arXiv:1707.01495, 2017. 

[5] Kulkarni T D, Narasimhan K R, Saeedi A, et al. Hierarchical Deep Reinforcement Learning: 
Integrating Temporal Abstraction and Intrinsic Motivation. arXiv preprint arXiv:1604.06057, 2016. 

[6] Schaul T, Quan J, Antonoglou I, et al. Prioritized experience replay. arXiv preprint 
arXiv:1511.05952, 2015. 

[7] Nasrabadi N M. Pattern recognition and machine learning. Journal of electronic imaging, 2007, 
16(4): 049901. 

[8] Horgan D, Quan J, Budden D, et al. Distributed prioritized experience replay. arXiv preprint 
arXiv:1803.00933, 2018. 

[9] Sutton R S, Barto A G. Reinforcement learning: An introduction. MIT press, 1998. 

[10] Hillier F S. Introduction to operations research. Tata McGraw-Hill Education, 2012. 

[11] Lillicrap T P, Hunt J J, Pritzel A, et al. Continuous control with deep reinforcement learning. 
arXiv preprint arXiv:1509.02971, 2015. 

[12] Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement 
learning. Nature, 2015. 

[13] Gu S, Lillicrap T, Sutskever I, et al. Continuous deep q-learning with model-based acceleration. 
In International Conference on Machine Learning, 2016. 

[14] Schulman J, Levine S, Abbeel P, et al. Trust region policy optimization. Trust region policy 
optimization. In International Conference on Machine Learning, 2015. 

[15] Dean J, Corrado G, Monga R, et al. Large scale distributed deep networks. In Proceedings of 
the 25th International Conference on Neural Information Processing Systems, 2012. 

[16] Fortunato M, Azar M G, Piot B, et al. Noisy networks for exploration. arXiv preprint 
arXiv:1706.10295, 2017. 

65



[17] Plappert M, Houthooft R, Dhariwal P, et al. Parameter space noise for exploration. arXiv 
preprint arXiv:1706.01905, 2017. 

[18] Hester T, Vecerik M, Pietquin O, et al. Deep Q-learning from Demonstrations. arXiv preprint 
arXiv:1704.03732, 2017. 

[19] Hogan N. Impedance control-An approach to manipulation. I-Theory. II-Implementation. III-
Applications. ASME Transactions Journal of Dynamic Systems and Measurement Control B, 1985, 
107: 1-24. 

[20] Kakade, Sham. A natural policy gradient. In Advances in Neural Information Processing 
Systems, 2002, pp. 1057–1063. 

[21] Levine S, Koltun V. Guided policy search. In Proceeding of International Conference on 
Machine Learning. 2013: 1-9. 

 

66




